Results Summary
- 1260 subjects with a Lynch-associated cancer referred for clinical Lynch testing
- 9% with Lynch mutation
- 12.3% with ≥1 mutation on 25-gene panel
- 3.4% with a non-Lynch mutation
- 34% with ≥1 VUS in a non-Lynch gene
- 28% of mutation carriers had mutations in non-Lynch cancer susceptibility genes
- 54% of non-Lynch mutations in high-penetrance genes
- 10% of mutation carriers had BRCA1/2 mutations
- Clinically appear more “Lynch-like” than “BRCA-like”

Strengths/Limitations
- Strengths
 - Large cohort of consecutive individuals
 - Representative sample of patients referred for clinical Lynch testing
- Limitations
 - Clinical data obtained via clinician report
 - Unable to verify accuracy or completeness
 - No data on other non-Lynch genetic testing done clinically
 - No data on tumor testing (MSI, mismatch repair IHC)
 - Do the identified mutations explain clinical phenotype?

Conclusions: Multi-Gene Panel Testing in Suspected Lynch Patients
- Identification of unexpected actionable mutations in high-penetrance non-Lynch genes
 - BRCA1/2 mutations in “Lynch-like” patients who do not fulfill clinical criteria for HBOC
- Increased yield comes at the cost of VUS identification and discovery of mutations in moderate-penetrance genes

Background – Genetic Testing for Hereditary Cancer Syndromes
- Traditional model
 - Analyze specific genes for patients who fulfill clinical criteria for a specific syndrome
 - Per NCCN guidelines, Lynch syndrome testing recommended for patients whose histories fulfill Bethesda guidelines or Amsterdam criteria
- Emerging model – Multi-gene panel testing
 - Next generation sequencing of numerous cancer susceptibility genes in parallel
- Advantages:
 - Analyze multiple genes simultaneously
 - Cost is dropping
- Concerns:
 - Identification of uninformative variants of uncertain significance (VUS)
 - Identification of mutations in moderate-penetrance cancer susceptibility genes
 - Does panel testing offer meaningful advantages over targeted, criteria-based testing strategies?

Background – Lynch syndrome (HNPCC)
- Most common hereditary GI cancer syndrome
 - Germline mutations in DNA mismatch repair genes: MLH1, MSH2, MSH6, PMS2, and EPCAM
 - Up to 30% of families fulfilling clinical criteria for Lynch do not have germline mutations
- 3% of colorectal cancers, 2% of endometrial cancers
 - Increased lifetime risk of other associated neoplasms:
 - GI: Gastric, small intestine, pancreatic, hepatobiliary
 - Gyn: Ovarian
 - Urinary tract: Bladder, ureter/renal pelvis, adrenocortical, kidney
 - Cutaneous: Sebaceous adenomas/carcinomas, keratoacanthomas
 - Brain tumors
 - Slightly increased risk of breast and prostate cancers

Study Aims
- Using 25-gene panel:
 - Determine prevalence of non-Lynch mutations in patients undergoing testing for Lynch syndrome
 - Describe clinical phenotype of mutation carriers
Methods: Study Population
- 3057 consecutive subjects
 - Personal history of Lynch-associated cancer and/or polyps
 - DNA submitted in 2012-13 for clinical Lynch testing
- Subjects undergoing testing for <5 Lynch syndrome genes were not included
- After completion of clinical Lynch testing, samples anonymized for research-based testing
- 1797 subjects excluded
 - Testing originated from one of 10 states that mandate destruction of samples after clinical genetic testing (N=1615)
 - Technical factors (insufficient remaining DNA, non-blood sample) N=182
- Final study population:
 - 1260 subjects
 - All with personal history of Lynch-associated cancer and/or polyps

Methods: 25-Gene Hereditary Cancer Panel

Methods: Clinical Characteristics
- As part of routine clinical testing, clinicians completed standard test request forms
 - Ancestry
 - Personal history of cancer and/or polyps
 - Age at diagnosis
 - Family history of cancer
- Personal/family history data broadly categorized to protect anonymization
- “Lynch-associated” cancers included
 - Colorectal, endometrial, ovarian, gastric, pancreatic, small bowel, urinary tract, hepatobiliary, and brain cancers, and sebaceous adenomas/carcinomas
 - Breast cancer not considered Lynch-associated, but data on personal/family histories of breast cancer were tracked
- Fulfillment of NCCN criteria for Lynch testing and hereditary breast ovarian cancer (HBOC) testing
 - Determined based on reported personal/family history data

Results: Subject Characteristics (N=1260)
- 73% female
- 41% Western/Northern European ancestry
- Median age 1st cancer diagnosis: 47 years (IQR 39-55.5)
- 63% with history of colorectal cancer
 - 34% with colorectal cancer age <50
 - 23% with endometrial cancer
 - 7% with ovarian cancer
 - 5% with breast cancer
 - 14% with multiple primary cancers
 - 74% with family history of any Lynch-associated cancer
 - 23% with family history of breast cancer
 - 88% met NCCN criteria for Lynch testing
- 25% met NCCN criteria for hereditary breast/ovarian cancer (HBOC) testing

Results: Germline Testing (N=1260)
- 155 (12.3%) subjects with ≥1 pathogenic mutation on the 25-gene panel
 - 114 (9.0%) subjects with a Lynch mutation
 - 43 (3.4%) with a non-Lynch mutation
 - Including 2 subjects with both Lynch and non-Lynch mutations
 - One with MSH6 and STK11 mutations
 - One with MSH2 and ATM mutations

Methods: Clinical Characteristics

Pathogenic mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified

Other high-penetration mutation carriers (N=8)
- APC (N=5) and biallelic MUTYH (N=2)
 - 5 (71%) with colorectal cancer
 - 3 (43%) with history of colorectal polyps
 - 1 (14%) with history of breast cancer
 - 100% with family history colorectal cancer
 - 100% met NCCN Lynch criteria
- STRK1 (N=1); same patient also carried pathogenic MSH6 mutation
 - Personal history of 3 primary cancers
 - Colorectal, endometrial, and breast cancers
 - Met NCCN Lynch criteria
- Note: 28 subjects (2% of study cohort) with monoallelic MUTYH mutations
 - Significance unclear
 - 23/28 were G196D or Y179C

Other high-penetrance genes
- Lynch syndrome
 - BRCA1/2
 - MSH2
 - MSH6
 - MSH2
 - MSH6
 - EPCAM
 - APC
 - CDH1
 - PTEN
 - TP53
 - APC
 - BARD1
 - CHEK2
 - BRIP1
 - RAD51C
 - PALB2
 - CDK12
 - NBN

Moderate-penetrance
- ATM
- BARD1
- BRCA1
- BRCA2
- CDX2
- CHEK2
- EPCAM
- MLH1
- MSH2
- MSH6
- MUTYH
- PMS2
- SMAD4
- STK11
- BRCA1
- BRCA2
- CHEK2
- MLH1
- MLH2
- MSH2
- MSH6
- TP53

All sequence variations and large rearrangements classified for pathogenicity

Variants of Uncertain Significance (VUS)
- Of the 20 non-Lynch genes, 594 VUS were seen in 433 (34%) subjects
- Most common genes to have a VUS
 - ATM (N=114 subjects)
 - APC (N=50)
 - MLH2 (N=50)
 - BRCA2 (N=50)
 - CDX2 (N=32)
 - CHEK2 (N=25)

Pathogenic mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified

Non-Lynch mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified

N=1260

33% fulfilled NCCN HBOC testing criteria versus 16% Lynch carriers

93% fulfilled NCCN Lynch testing criteria versus 95% of Lynch carriers

Lynch syndrome mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified

Non-Lynch mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified

N=1260

33% fulfilled NCCN HBOC testing criteria versus 16% Lynch carriers

93% fulfilled NCCN Lynch testing criteria versus 95% of Lynch carriers
Methods: Study Population
- 3057 consecutive subjects
 - Personal history of Lynch-associated cancer and/or polyps
 - DNA submitted in 2012-13 for clinical Lynch testing
 - Subjects undergoing testing for <5 Lynch syndrome genes were not included
 - After completion of clinical Lynch testing, samples anonymized for research-based testing
- 1797 subjects excluded
 - Testing originated from one of 10 states that mandate destruction of samples after clinical genetic testing (N=1615)
 - Technical factors (insufficient remaining DNA, non-blood sample) N=182
 - Final study population: 1260 subjects
 - All with personal history of Lynch-associated cancer and/or polyps

Results: Subject Characteristics
- 1260 subjects
- At least 1 personal/family history of breast cancer
- At least 1 personal/family history of colorectal cancer

Methods: Clinical Characteristics
- As part of routine clinical testing, clinicians completed standard test request forms
 - Ancestry
 - Personal history of cancer and/or polyps
 - Age at diagnosis
 - Family history of cancer
 - Personal/family history data broadly categorized to protect anonymization
 - “Lynch-associated” cancers included:
 - Colorectal, endometrial, ovarian, gastric, pancreatic, small bowel, urinary tract, hepatobiliary, and brain cancers, and sebaceous adenomas/carcinomas
 - Breast cancer not considered Lynch-associated, but data on personal/family histories of breast cancer were tracked
 - Fulfillment of NCCN criteria for Lynch testing and hereditary breast ovarian cancer (HBOC) testing
 - Determined based on reported personal/family history data

Methods: 25-Gene Hereditary Cancer Panel

High-penetrance genes
- Lynch syndrome
 - BRCA1/2
 - MLH1
 - MSH2
 - PMS2
 - EPCAM

Moderate-penetrance genes
- CDKN2A
- ATM
- PMS2
- STK11
- CDH1
- PTEN
- TP53
- MSH6
- BARD1
- CHEK2
- BRIP1
- NBN
- BRCA1/2

Other high-penetrance genes
- APC
- MSH6
- CDX2
- CDH1
- STK11
- PMS2
- APC
- EPCAM
- BRCA1

Methods: Germline Testing (N=1260)
- 12.3% subjects with ≥1 pathogenic mutation on the 25-gene panel
 - 9.0% with Lynch mutations
 - 3.4% with non-Lynch mutations

Results: Germline Testing (N=1260)
- 155 (12.3%) subjects with ≥1 pathogenic mutation on the 25-gene panel
 - 114 (9.0%) subjects with a Lynch mutation
 - MSH6 (N=14) and PALB2 (N=14)
 - BRCA1 (N=5) and biallelic MUTYH (N=2)
 - APC (N=5) and biallelic MUTYH (N=2)
 - 43 (3.4%) with a non-Lynch mutation
 - Including 2 subjects with both Lynch and non-Lynch mutations
 - One with MSH6 and STK11 mutations
 - One with MSH2 and ATM mutations

Pathogenic mutations identified by multi-gene panel testing

BRCA1/2 carriers (N=15) 10% of all mutations identified
- 53% female
- 60% colorectal cancer
- 33% colorectal cancer age <50
- 7% ovarian cancer
- 0 with breast cancer
- 0 with pancreatic cancer

33% fulfilled NCCN HBOC testing criteria

Other high-penetrance mutation carriers (N=8)
- APC (N=5) and biallelic MUTYH (N=2)
 - S (71%) with colorectal cancer
 - 2 at age <50
 - 1 (43%) with history of colorectal polyps
 - 1 (14%) with history of breast cancer
 - 100% with family history colorectal cancer
 - 100% met NCCN Lynch criteria
- STK11 (N=1); same patient also carried pathogenic MSH6 mutation
 - Personal history of 3 primary cancers
 - Colorectal, endometrial, and breast cancers
 - Met NCCN Lynch criteria
- Note: 28 subjects (0% of study cohort) with monoallelic MUTYH mutations
 - Significance unclear
 - 23/28 were G196D or Y179C

Variants of Uncertain Significance (VUS)
- Of the 20 non-Lynch genes, 594 VUS were seen in 433 (34%) subjects
- Most common genes to have a VUS
 - ATM (N=114 subjects)
 - APC (N=50)
 - MSH6 (N=50)
 - BRIP1 (N=50)
 - CDX2A (N=32)
 - CHEK2 (N=31)

93% fulfilled NCCN Lynch testing criteria

Non-Lynch mutations identified by multi-gene panel testing
Multi-Gene Panel Testing in Patients Suspected to Have Lynch Syndrome*

Matthew B. Yurgelun, Brian Allen, Rajesh Kaldate, Karla Bowles, Benjamin Roa, Richard J. Wenstrup, Anne-Renee Hartman, Sapna Syngal

*Poster Presented at ASCO - June 2014

Background – Genetic Testing for Hereditary Cancer Syndromes

- Traditional model
 - Analyze specific genes for patients who fulfill clinical criteria for a specific syndrome
 - Per NCCN guidelines, Lynch syndrome testing recommended for patients whose histories fulfill Bethesda guidelines or Amsterdam criteria

- Emerging model
 - Multi-gene panel testing
 - Next generation sequencing of numerous cancer susceptibility genes in parallel

Advantages:
- Analyze multiple genes simultaneously
- Cost is dropping

Concerns:
- Identification of uninformative variants of uncertain significance (VUS)
- Identification of mutations in moderate-penetrance cancer susceptibility genes

Does panel testing offer meaningful advantages over targeted, criteria-based testing strategies?

Background – Lynch syndrome (HNPCC)

- Most common hereditary GI cancer syndrome
 - Germline mutations in DNA mismatch repair genes: MLH1, MSH2, MSH6, PMS2, and EPCAM
 - Up to 30% of families fulfilling clinical criteria for Lynch do not have germline mutations

- 3% of colorectal cancers, 2% of endometrial cancers
 - Increased lifetime risk of other associated neoplasms:
 - GI: Gastric, small intestine, pancreatic, hepatobiliary
 - Gyn: Ovarian
 - Urinary tract: Bladder, ureter/renal pelvis, adrenocortical, kidney
 - Cutaneous: Sebaceous adenomas/carcinomas, keratoacanthomas
 - Brain tumors
 - Slightly increased risk of breast and prostate cancers

Conclusions: Multi-Gene Panel Testing in Suspected Lynch Patients

- Identification of unexpected actionable mutations in high-penetrance non-Lynch genes
 - BRCA1/2 mutations in “Lynch-like” patients who do not fulfill clinical criteria for HBOC

- Increased yield comes at the cost of VUS identification and discovery of mutations in moderate-penetrance genes

Results Summary

- 1260 subjects with a Lynch-associated cancer referred for clinical Lynch testing
 - 9% with Lynch mutation
 - 12.3% with ≥1 mutation on 25-gene panel
 - 3.4% with a non-Lynch mutation
 - 34% with ≥1 VUS in a non-Lynch gene

- 28% of mutation carriers had mutations in non-Lynch cancer susceptibility genes
- 54% of non-Lynch mutations in high-penetrance genes
- 10% of mutation carriers had BRCA1/2 mutations
 - Clinically appear more “Lynch-like” than “BRCA-like”

- 3.4% with a non-Lynch mutation
- 34% with ≥1 VUS in a non-Lynch gene

- 12.3% with ≥1 mutation on 25-gene panel
- 3.4% with a non-Lynch mutation
- 34% with ≥1 VUS in a non-Lynch gene

- 9% with Lynch mutation

Strengths/Limitations

- Strengths
 - Large cohort of consecutive individuals
 - Representative sample of patients referred for clinical Lynch testing

- Limitations
 - Clinical data obtained via clinician report
 - Unable to verify accuracy or completeness
 - No data on other non-Lynch genetic testing done clinically
 - No data on tumor testing (MSI, mismatch repair IHC)
 - Do the identified mutations explain clinical phenotype?

Study Aims

- Using 25-gene panel:
 - Determine prevalence of non-Lynch mutations in patients undergoing testing for Lynch syndrome
 - Describe clinical phenotype of mutation carriers